p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.386C23, C8⋊D4⋊7C2, C8⋊5D4⋊6C2, C8⋊8D4⋊46C2, C4⋊C4.246D4, C8.9(C4○D4), (C4×SD16)⋊54C2, C22⋊C4.86D4, C8.5Q8⋊17C2, C23.83(C2×D4), C4⋊C4.113C23, (C2×C8).601C23, (C4×C8).291C22, (C2×C4).372C24, (C4×D4).93C22, C4⋊Q8.115C22, SD16⋊C4⋊19C2, (C4×Q8).90C22, C8○2M4(2)⋊16C2, C2.D8.96C22, C2.38(D4○SD16), (C2×D4).127C23, C4⋊D4.34C22, C4⋊1D4.64C22, (C2×Q8).115C23, C8⋊C4.129C22, C4.Q8.164C22, C22⋊Q8.34C22, (C22×C8).360C22, (C2×SD16).22C22, C22.632(C22×D4), C42.C2.19C22, D4⋊C4.205C22, C22.35C24⋊3C2, (C22×C4).1052C23, Q8⋊C4.128C22, C42⋊C2.329C22, C42.30C22⋊20C2, C42.29C22⋊20C2, (C2×M4(2)).282C22, C22.34C24.2C2, C2.69(C22.26C24), C4.57(C2×C4○D4), (C2×C4).144(C2×D4), SmallGroup(128,1906)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C42⋊C2 — C42.386C23 |
Generators and relations for C42.386C23
G = < a,b,c,d,e | a4=b4=c2=1, d2=b2, e2=b, ab=ba, ac=ca, dad-1=ab2, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=a2c, ece-1=b-1c, de=ed >
Subgroups: 348 in 181 conjugacy classes, 88 normal (34 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, C8⋊C4, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C42.C2, C42⋊2C2, C4⋊1D4, C4⋊Q8, C22×C8, C2×M4(2), C2×SD16, C8○2M4(2), C4×SD16, SD16⋊C4, C8⋊8D4, C8⋊D4, C42.29C22, C42.30C22, C8⋊5D4, C8.5Q8, C22.34C24, C22.35C24, C42.386C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, C22.26C24, D4○SD16, C42.386C23
(1 39 31 11)(2 40 32 12)(3 33 25 13)(4 34 26 14)(5 35 27 15)(6 36 28 16)(7 37 29 9)(8 38 30 10)(17 57 56 45)(18 58 49 46)(19 59 50 47)(20 60 51 48)(21 61 52 41)(22 62 53 42)(23 63 54 43)(24 64 55 44)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 50)(2 53)(3 56)(4 51)(5 54)(6 49)(7 52)(8 55)(9 61)(10 64)(11 59)(12 62)(13 57)(14 60)(15 63)(16 58)(17 25)(18 28)(19 31)(20 26)(21 29)(22 32)(23 27)(24 30)(33 45)(34 48)(35 43)(36 46)(37 41)(38 44)(39 47)(40 42)
(1 47 5 43)(2 48 6 44)(3 41 7 45)(4 42 8 46)(9 52 13 56)(10 53 14 49)(11 54 15 50)(12 55 16 51)(17 37 21 33)(18 38 22 34)(19 39 23 35)(20 40 24 36)(25 61 29 57)(26 62 30 58)(27 63 31 59)(28 64 32 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,39,31,11)(2,40,32,12)(3,33,25,13)(4,34,26,14)(5,35,27,15)(6,36,28,16)(7,37,29,9)(8,38,30,10)(17,57,56,45)(18,58,49,46)(19,59,50,47)(20,60,51,48)(21,61,52,41)(22,62,53,42)(23,63,54,43)(24,64,55,44), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,50)(2,53)(3,56)(4,51)(5,54)(6,49)(7,52)(8,55)(9,61)(10,64)(11,59)(12,62)(13,57)(14,60)(15,63)(16,58)(17,25)(18,28)(19,31)(20,26)(21,29)(22,32)(23,27)(24,30)(33,45)(34,48)(35,43)(36,46)(37,41)(38,44)(39,47)(40,42), (1,47,5,43)(2,48,6,44)(3,41,7,45)(4,42,8,46)(9,52,13,56)(10,53,14,49)(11,54,15,50)(12,55,16,51)(17,37,21,33)(18,38,22,34)(19,39,23,35)(20,40,24,36)(25,61,29,57)(26,62,30,58)(27,63,31,59)(28,64,32,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (1,39,31,11)(2,40,32,12)(3,33,25,13)(4,34,26,14)(5,35,27,15)(6,36,28,16)(7,37,29,9)(8,38,30,10)(17,57,56,45)(18,58,49,46)(19,59,50,47)(20,60,51,48)(21,61,52,41)(22,62,53,42)(23,63,54,43)(24,64,55,44), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,50)(2,53)(3,56)(4,51)(5,54)(6,49)(7,52)(8,55)(9,61)(10,64)(11,59)(12,62)(13,57)(14,60)(15,63)(16,58)(17,25)(18,28)(19,31)(20,26)(21,29)(22,32)(23,27)(24,30)(33,45)(34,48)(35,43)(36,46)(37,41)(38,44)(39,47)(40,42), (1,47,5,43)(2,48,6,44)(3,41,7,45)(4,42,8,46)(9,52,13,56)(10,53,14,49)(11,54,15,50)(12,55,16,51)(17,37,21,33)(18,38,22,34)(19,39,23,35)(20,40,24,36)(25,61,29,57)(26,62,30,58)(27,63,31,59)(28,64,32,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,39,31,11),(2,40,32,12),(3,33,25,13),(4,34,26,14),(5,35,27,15),(6,36,28,16),(7,37,29,9),(8,38,30,10),(17,57,56,45),(18,58,49,46),(19,59,50,47),(20,60,51,48),(21,61,52,41),(22,62,53,42),(23,63,54,43),(24,64,55,44)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,50),(2,53),(3,56),(4,51),(5,54),(6,49),(7,52),(8,55),(9,61),(10,64),(11,59),(12,62),(13,57),(14,60),(15,63),(16,58),(17,25),(18,28),(19,31),(20,26),(21,29),(22,32),(23,27),(24,30),(33,45),(34,48),(35,43),(36,46),(37,41),(38,44),(39,47),(40,42)], [(1,47,5,43),(2,48,6,44),(3,41,7,45),(4,42,8,46),(9,52,13,56),(10,53,14,49),(11,54,15,50),(12,55,16,51),(17,37,21,33),(18,38,22,34),(19,39,23,35),(20,40,24,36),(25,61,29,57),(26,62,30,58),(27,63,31,59),(28,64,32,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | ··· | 4F | 4G | 4H | 4I | 4J | ··· | 4O | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | 4 | 4 | 8 | ··· | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | D4○SD16 |
kernel | C42.386C23 | C8○2M4(2) | C4×SD16 | SD16⋊C4 | C8⋊8D4 | C8⋊D4 | C42.29C22 | C42.30C22 | C8⋊5D4 | C8.5Q8 | C22.34C24 | C22.35C24 | C22⋊C4 | C4⋊C4 | C8 | C2 |
# reps | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 4 |
Matrix representation of C42.386C23 ►in GL6(𝔽17)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
1 | 15 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 14 | 5 | 0 |
0 | 0 | 14 | 0 | 0 | 12 |
0 | 0 | 12 | 0 | 0 | 14 |
0 | 0 | 0 | 5 | 14 | 0 |
4 | 9 | 0 | 0 | 0 | 0 |
4 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 14 |
0 | 0 | 0 | 12 | 3 | 0 |
0 | 0 | 0 | 14 | 5 | 0 |
0 | 0 | 3 | 0 | 0 | 5 |
1 | 15 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 12 |
0 | 0 | 0 | 0 | 5 | 5 |
G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[1,0,0,0,0,0,15,16,0,0,0,0,0,0,0,14,12,0,0,0,14,0,0,5,0,0,5,0,0,14,0,0,0,12,14,0],[4,4,0,0,0,0,9,13,0,0,0,0,0,0,12,0,0,3,0,0,0,12,14,0,0,0,0,3,5,0,0,0,14,0,0,5],[1,1,0,0,0,0,15,16,0,0,0,0,0,0,5,5,0,0,0,0,12,5,0,0,0,0,0,0,5,5,0,0,0,0,12,5] >;
C42.386C23 in GAP, Magma, Sage, TeX
C_4^2._{386}C_2^3
% in TeX
G:=Group("C4^2.386C2^3");
// GroupNames label
G:=SmallGroup(128,1906);
// by ID
G=gap.SmallGroup(128,1906);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,184,1018,80,4037,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=1,d^2=b^2,e^2=b,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^2*c,e*c*e^-1=b^-1*c,d*e=e*d>;
// generators/relations